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Critical Comp051t10n for Nucleatlon in Qu351 Binary Finite

'Systems

A first-order phase transition may proceed via homogeneous nuc-
1eat10n only in a certain range of the thermodynamic parameters
/1/. From classical nucleation theory, e.g., the existence of a
critical supersaturatlon is known, which must be reached, at
least, in an infinite system, to observe the formation of drops
/2/.

As was shown -in recent investigations infinite systems we
find, in addition, critical system volumes, critical total par-
ticle numbers or-critical values of the temperatures different
from macroscopic ones, which determine the boundaries in the
parameter space, for which homogeneous nucleation'may occur /3/.
Thése preceding investigations of critical thermodynamic parame-
ters have been carried out malnly for one-component systems /3,
4/. But also for nucleatlon in a guasi-binary system the exi-
stence of a critical system volume /5/ and a critical tempera-
ture (in the foregoing paper /6/) have been discussed.

The investigations are extended now to the calculation of a
critical ipitial composition of the quasi-binary system in de-
pendence on temperature which must be reached at least to al]ow
the formation of supercritical clusters.

1. The free enthalpy of cluster formation in dependence on the
molar fraction

The system considered here is a superoaturated s0lid solution
with two components under the thermodynamic constraints

n. = const., p = const., T = const. (1.1

Taking into account n = Ny + Ny, we define the molar fraction
of the initially homageneous supersaturated system by x = n2/n,
n being the total mole number of the finite system, p the. ex-
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ternal pressure and T the temperature. The formation of clusters
of a new phase results in the evolution of a heterogeneous sy-
stem, consisting of clusters in the otherwise homogeneous matrix.
Parameters, describing the cluster phase are specified further by
4, parcameters of the matrix by p ’ :
Assuming, now, in addition, that the cluster is formed only
by particles of component 2‘(quasi binary system) (xg = 1) and
.considering the cluster phase as incompressible (v2¢’— constant)
and of spherical shape, the number of particles in a.cluster nZL
can be expressed through the radius Ty and the molar volume by
iy, = 4T j/v

= The medium is considered as an ideal mixture
of both components, the molar fraction being defined as

) n n,-n, nx-fy
.2 2 &+ (1.2)
B Ng n-rig n-fy ; .

The work of cluster formation is then given by the change of the
free enthalpy cohnected with the transition from the initially
homegeneous to the heterogeneous state. It has been derived in
the foregoing paper /6/ as

CX
AG B 36 0y
RT = CIn o= T Vel Mo
Zeq & (1.3)
(1- ~Xg ) ’

X
+ (xln B (1-x) 1n _T_§7—) n

Here ¢ is the initial concentration of the total mole number,

c eq the saturation concentration of component 2 in the matrix,
Vod, the molar dengity of the particles in the cluster, € the
surface tension. The existence of elastic strains resulting from
the formation of the cluster in the matrix is not considered
here, it leads to an additional contribution to AG /6,7/.

Fig. 1 presents AG vs. the cluster radius gy for different
values of the initial molar fraction x of the binary system.
First we note the existence of a critical cluster size given Sy

. a maximum of &G, and a stable cluster size where the free en-
thalpy has got a minimum. This stable state is caused by the de-
pletion of the medium due to the cluster formation, because of
n = const,
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Fig. 1: Freg enthalpy'AG/kBT (eq. 1.3) vs. cluster radius rg (nm)
- (a) x = 0,02, (b) x = 0.019, (c) x = 0.018, (d) x = 0.016
the calculation was carried out for a silver halogenide/
natrium borate solution, x = x(AgCl), T = 820 K, c =
3.48'104 mol/m3, total particle number N = 104

. A
The values of the extrema of AG and the equilibrium cluster

sizes both depend on the value of x. As shown in Fig. 1 we find
a critical initial molar fraction X where AG has no extrema
but only a point of inflexion, That means physically that for
x(xC no supercritical resp. no stable cluster can exist in the
system, and a phase separation by nucleation should be impos-

sible .from a thermodynamic point of view.

2. Equilibrium cluster sizes and critical molar fraction

The dependence of the extremum states on the initial composition-
x can be discussed in more detail calculating the equilibriuﬁ
condition. We find for the first derivative of AG:

2 Ag) 2 (RT , GCX

=2l so-avwel B e B L 287 2 (2.1)

'31‘* . - VO c, r,

X . TR AL :

The first solution of eq. (2.1) is given.by 1y = O, that_means'
we have a stable matrix phasef where no cluster exists.
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The critical and the stable cluster sizes can be obtained from
the following equilibrium condition:
cX v
In 8 -2 - (2.2)
29 .

'

2eq gives a measure of the actual super-.
saturation of component 2 in the system. Because Xp depends on

Here the value y = cxp/c

Ty » €4. (2.2) possesses two solutions for a certain range of
thermodynamic constraints. This is demonstrated in Fig. 2 ob-
tained from an iteration of eg. (2 2). For a given value of x
thke smaller value for the radius corresponds to the crltlcal
cluster size and the larger value to the stable cluster size
/2,3/. It is shown that for a crltlcal value Xg both solutions
coincide, and for x <xc no solution of the equilibrium condi-
tion (2.2) exists. As 'can be seen from the figure this critical
composition itself depends on temperature: for a iarger'tempera—
tupe Xg also has got a\larger value. The existence of a lower
‘boundary of x, for which a decomposition may occur, is known
from macroscopic bhase diagrams. The important point,rwhich is
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FiQ. 2: Critical (---) and stable (—) cluster radius r,  (nm)
vs. initial mole fraction x
(a) T = 800 K, (b) T = 880 K
»xé is obtained as (a) xg = 0.0148, (b) Xg = 0.01995
For the parameters see Fig. 1.
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to be stressed here, is the déViation of the corresponding value
for finite compared with macroscopic systems. This result should
be of importance in practical situations, if phase transitions
in relatively small cavities are investigated. In the following
this effect is studied irn"more detail.

Inserting xp (eg. 1.2) into the equilibrium condition we
find: '

<nx-§'—“-ol—rj> o o \
i —E Vm¢ - %S'ﬁ%i = 0. . (2.3)
€2aq (n~ /v ) K

For thé logarithm of eq. (2.3) we use a power expansion neglec-
ting terms of higher than the first order. Then eq. (2.3) can
be transformed into an algebraic eguation for T, /3,8/:

rlov A T, +8.=70 ‘ : (2.4)
with - ’ ' ’
A= nCam/vy )Tt <l—§7><1n g:e ) <0 (2.5)
: q
B = neaw/bvipTt s & 2'*) $0 e

"It has been shown onalytioally /8/ that eq. (2.4) possesses only
two positive solutions which depend on the values of the thermo-
dynamic constraints (compare also Fig. 2). These solutions ooin-
cide if the relation (2.7) holds

(%\4 : (%)3 ' , . (2.7
Thus eq. (2.7) determines the boundaries in the space of the

thermodynamic parameters between thermodynamically stable and
metastable -states. From eg. (2.7) we find with (2.5), (2.6):

(5 (o) ® = 4 ““‘)(—E 2*) = const.(T) - (2.8)
X’ Czeq(T) RT
Z» '
Neglecting the dependence of & on the composition of the matrix,
the r.h.s. of eq. (2.8) is only a function of temperature. For a
given total particle number n in the system and a given tempe-
" rature we can calculate, now, the critical valine of x determined
Dy eq. (2.8) The results are given in'Fig. 3 for different va-
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Fig. 3! Critical initial mole fraction X (%) vs. temperature
4 g
(K), total particle number (a) N = 10%, (b) N = 107,
(c) N > 1020

For the parameters see Fig. 1.

lues of n. Only for x> X, @ phase transition via nucleation may
occur. It is shawn, that for finite systems X increases for a
decreasing total mole numbet, but in the thermodynamic limit L
converges into the constant value obtained for the infinite sy-
stem. )

3, Temperature dependence of the critical molar fraction

"To obtain general analytical results concerning the temperature
dependence of the critical value of the initial molar fraction
X, We apply, now, the thgory of implicite functions in an ana-
logous way, as it was done in an analysis of the size dependen-
ce of a critical temperature in one-component systems /107 .

As it was discussed in tHe preceding paragraphs (see, in par-
ticular, Fig. 1) the critical value of the molar fraction is gi-
ven by the conditions (3.1) -

D ag _ %ag N
f)[‘d_ —W— 0 (3.1
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The first derivative of AG is given by eq. (2.1). The second
derivative can be.calculated as follows:

2 cX
LLAZ_GMBM&.@“M_B__E]
C T
rbq* vzoL 2eq &~ (3.2)
1-x
T B 29"
- 4H‘r [ROAIHF %o (- Anqh/VZL) + —7
2

We obtain therefore the following s&stem of equations for the
determination of X

L(n 0%, T) = 1n — - &Y &k . 4
18T X Cr0q Tk RT )
- 3,00 “7%8 26 Vou o
f2<1‘0,\,n,>(,T) = _ATrroL/VQ W + 7R—~ = 0 (3.3)

For a given value of n both equations define implicitely a func-
tion ry (x,T). Combining these two functions, we find an equa-
tion for x (T) A numerical solution of the system of equations
(3.3) is p0551ble it is equivalent to the results, given in
Fig.:2, obtaifed based on egs. (2,3) and (2.7).

Based on egs. (3.3) and the theory of implicite functions we
may obtaln the f0110w1ng differential equations for the cluster
size HL’ corresponding to the point of inflexion, and the cri-

tical molar fraction Xa in dependence on temperature.
) f 2t
1 1
drg _ _ 1 | AT %% .
dt A 2T, o, (3.4)
. T Ix
’Bfl nt,
dx 1 or, T .
c .1 X (3.5)
dT A Qiz sz ]
1AL, '
with
Qfl L,
oL, ox
A= (3.6)
o, *afz
’ar& ;X
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The partial derivatives of the functions fl and f2 (egs. 3.3)
' are calculated approximately, retaining only the dominant terms.
Consequently, the possible temperature dependence of &, V§¢ is

neglected, ¢, is expressed through /11/

eq
'QCZe

g e

. S2eq RT
g being the molar heat 6f solution.

This approach yields

' ’ f 26 v2
LRV Wy T
T RT? " RTZ - Ty
_ 3
IR nt,  4wrg
Aax T xg n Ax o 2
[ VoaEXp
0 : - 0
’Dfl y 2§ vy, 1 ’bfz o 28V 1
oty B 2 o %
fdry. RT _ ri ’ard‘ \ RT rd%

Inserting these derivatives into egs. (3.5), (3.6) the dependen-
ce of the critical molar fraction on temperature can be ex-
pressed by

(8]
' 27 a . 2%Vaa 1
¢ B¥e 7t 7 T,
) RT RT o

ax
a5 = (3.7)
dT- 3,0 .
4ﬂfr$/v2* + NXg

For a discussion of eq. (3.7) we approximate, finally, the de-
Tivative again by the largest terms of the numerator and the de-

nominator and arrive at:

c N Xy ) .
STt | (3.8)
In agreement with the numerical results presented in Fig. 3 we
find that the critical initial molar fractiohvxc increases with
an increasing temperature or, in other wordg with a decreasing
initial supersaturation. The temperaturevdependence of xc’can be
given alse in an alternative form obtained from eq. (3.8)

g (1 DCpeq\ (1 e\ ,
'd“T'."‘:(czeq Lo ) Lt | (3.9)
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It means that| the most important contributions to the change of

X
c

with temperature are the tempera%ure dependence of ¢ and

2eq

the dependence of xp on x reflecting the influence of the total

number of particles n.
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Frank Schweitzer; Jorn Bartels

The Effect of Elastic Strains and Depletion on Nucleation and
Growth in Binary Solutions

As discussed in preceding papers /1,2/ elastic strains quantita-
tively and gqualitatively modify the kinetics of growth of the
supercritical clusters and the cluster evolution in the late
stage of Ostwald ripening.

In this paper we restrict ourselves mainly to the initial
stage of the phase transition including the formation of clu-
sters and their growth up to an overcritical size.

The“investigations are based on a thermodynamic analysis pre-
sented in the foregoing papers /3,4,5/.

1. Rate sguation
We consider a binary system with thes thermodynamic constraints
no=ong o+, T const., p = const., T = const. (1.1)

where n is the total mole number in the system consisting of
two components, p the external pressure and T the temperature. -
The molar fraction of ther initial stage is introduced as x =
nz/h. In tie neterogencous stétu the total wmole number is divi-
ded into the mole numper of the cluster phase, denoted by <l ,
and the mole number of the matrix phase indicated by B . Assu-’
ming as before /4,4,7/,. that the clusters arc formed only by
particles of component 2 it yields n2 = n23+ n*‘= const. and we
may write for the molar fraction of the matrix:

N, x’\X—-ﬂot

wmo DT o . (1.2)

BTy R

The cluster phase shall be spatially distriputed in clusters
with the particle. number J (iy»2)

N
ng = Nt 2L 3 Ny s (1.3)
=L



